Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS Genet ; 18(4): e1010137, 2022 04.
Article in English | MEDLINE | ID: covidwho-1789166

ABSTRACT

Viral infections can alter host transcriptomes by manipulating host splicing machinery. Despite intensive transcriptomic studies on SARS-CoV-2, a systematic analysis of alternative splicing (AS) in severe COVID-19 patients remains largely elusive. Here we integrated proteomic and transcriptomic sequencing data to study AS changes in COVID-19 patients. We discovered that RNA splicing is among the major down-regulated proteomic signatures in COVID-19 patients. The transcriptome analysis showed that SARS-CoV-2 infection induces widespread dysregulation of transcript usage and expression, affecting blood coagulation, neutrophil activation, and cytokine production. Notably, CD74 and LRRFIP1 had increased skipping of an exon in COVID-19 patients that disrupts a functional domain, which correlated with reduced antiviral immunity. Furthermore, the dysregulation of transcripts was strongly correlated with clinical severity of COVID-19, and splice-variants may contribute to unexpected therapeutic activity. In summary, our data highlight that a better understanding of the AS landscape may aid in COVID-19 diagnosis and therapy.


Subject(s)
COVID-19 , Alternative Splicing/genetics , COVID-19/genetics , COVID-19 Testing , Humans , Proteomics , SARS-CoV-2/genetics , Transcriptome
2.
Proc Natl Acad Sci U S A ; 117(45): 28336-28343, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-882991

ABSTRACT

Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, has resulted thus far in greater than 933,000 deaths worldwide; yet disease pathogenesis remains unclear. Clinical and immunological features of patients with COVID-19 have highlighted a potential role for changes in immune activity in regulating disease severity. However, little is known about the responses in human lung tissue, the primary site of infection. Here we show that pathways related to neutrophil activation and pulmonary fibrosis are among the major up-regulated transcriptional signatures in lung tissue obtained from patients who died of COVID-19 in Wuhan, China. Strikingly, the viral burden was low in all samples, which suggests that the patient deaths may be related to the host response rather than an active fulminant infection. Examination of the colonic transcriptome of these patients suggested that SARS-CoV-2 impacted host responses even at a site with no obvious pathogenesis. Further proteomics analysis validated our transcriptome findings and identified several key proteins, such as the SARS-CoV-2 entry-associated protease cathepsins B and L and the inflammatory response modulator S100A8/A9, that are highly expressed in fatal cases, revealing potential drug targets for COVID-19.


Subject(s)
COVID-19/metabolism , Proteome/metabolism , Transcriptome , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Colon/metabolism , Fatal Outcome , Female , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Male , Middle Aged , Neutrophil Activation , Proteome/genetics , SARS-CoV-2/pathogenicity , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL